
Erasable PUFs: 

Formal Treatment 

and Generic Design

Chenglu Jin, Wayne Burleson, Marten van Dijk, and Ulrich Rührmair



Physical Unclonable Functions (PUFs)



Physical Unclonable Functions (PUFs)

• Hardware security primitive taking challenges and generating 

responses



Physical Unclonable Functions (PUFs)

• Hardware security primitive taking challenges and generating 

responses

• Unique fingerprint on individual IC even if designed and 

fabricated in the same way



Physical Unclonable Functions (PUFs)

• Hardware security primitive taking challenges and generating 

responses

• Unique fingerprint on individual IC even if designed and 

fabricated in the same way

• Leveraging manufacturing process variations



Physical Unclonable Functions (PUFs)

• Hardware security primitive taking challenges and generating 

responses

• Unique fingerprint on individual IC even if designed and 

fabricated in the same way

• Leveraging manufacturing process variations

• Ideally, PUFs are Physical Random Functions



Physical Unclonable Functions (PUFs)

• Hardware security primitive taking challenges and generating 

responses

• Unique fingerprint on individual IC even if designed and 

fabricated in the same way

• Leveraging manufacturing process variations

• Ideally, PUFs are Physical Random Functions

Applications



Physical Unclonable Functions (PUFs)

• Hardware security primitive taking challenges and generating 

responses

• Unique fingerprint on individual IC even if designed and 

fabricated in the same way

• Leveraging manufacturing process variations

• Ideally, PUFs are Physical Random Functions

Applications

• Device/Chip Authentication



Physical Unclonable Functions (PUFs)

• Hardware security primitive taking challenges and generating 

responses

• Unique fingerprint on individual IC even if designed and 

fabricated in the same way

• Leveraging manufacturing process variations

• Ideally, PUFs are Physical Random Functions

Applications

• Device/Chip Authentication

• Key Management/Storage



Physical Unclonable Functions (PUFs)

• Hardware security primitive taking challenges and generating 

responses

• Unique fingerprint on individual IC even if designed and 

fabricated in the same way

• Leveraging manufacturing process variations

• Ideally, PUFs are Physical Random Functions

Applications

• Device/Chip Authentication

• Key Management/Storage

• Cryptographic Protocols (Key Exchange, Oblivious Transfer, Bit 

Commitment)



Physical Unclonable Functions (PUFs)

• Hardware security primitive taking challenges and generating 

responses

• Unique fingerprint on individual IC even if designed and 

fabricated in the same way

• Leveraging manufacturing process variations

• Ideally, PUFs are Physical Random Functions

Applications

• Device/Chip Authentication

• Key Management/Storage

• Cryptographic Protocols (Key Exchange, Oblivious Transfer, Bit 

Commitment)

Today’s Focus



Simplified PUF-based Key Exchange Protocol

𝐶0, 𝐶1, … , 𝐶𝑘 𝑅0, 𝑅1, … , 𝑅𝑘



Simplified PUF-based Key Exchange Protocol

(C, R)

Public, Authenticated Physical Channel



Simplified PUF-based Key Exchange Protocol

(C, R)

Public, Authenticated Communication Channel

𝐶0, 𝐶1, … , 𝐶𝑘



Simplified PUF-based Key Exchange Protocol

(C, R)

R is the shared secret key

The security of this protocol relies on the unpredictability of PUF 
responses given its challenges. 

𝐶0, 𝐶1, … , 𝐶𝑘 𝑅0, 𝑅1, … , 𝑅𝑘



Simplified PUF-based Key Exchange Protocol

(C, R)

R is the shared secret key

The security of this protocol relies on the unpredictability of PUF 
responses given its challenges. 

Not Complete!

𝐶0, 𝐶1, … , 𝐶𝑘 𝑅0, 𝑅1, … , 𝑅𝑘



After Protocol Execution

(C, R) (C, R)
C R

Eve



After Protocol Execution

(C, R) (C, R)
C R

Eve

• In the PUF Re-Use model, Eve can know the secret R as well.



After Protocol Execution

(C, R) (C, R)
C R

Eve

• In the PUF Re-Use model, Eve can know the secret R as well.
• Highly realistic threat against PUF-based protocol, as destroying PUFs after 

one protocol execution is prohibitively uneconomic.



After Protocol Execution

(C, R) (C, R)
C R

Eve

• In the PUF Re-Use model, Eve can know the secret R as well.
• Highly realistic threat against PUF-based protocol, as destroying PUFs after 

one protocol execution is prohibitively uneconomic.
• Actually, impossibility results of constructing PUF-based crypto protocols like 

KE/OT in PUF Re-Use model have been proved.

Marten van Dijk and Ulrich Rührmair. "Physical unclonable functions in cryptographic protocols: Security proofs 
and impossibility results." IACR ePrint (2012)



After Protocol Execution

(C, R) (C, R)
C R

Eve

• In the PUF Re-Use model, Eve can know the secret R as well.
• Highly realistic threat against PUF-based protocol, as destroying PUFs after 

one protocol execution is prohibitively uneconomic.
• Actually, impossibility results of constructing PUF-based crypto protocols like 

KE/OT in PUF Re-Use model have been proved.
• The issue has to be solved on the hardware level.

Marten van Dijk and Ulrich Rührmair. "Physical unclonable functions in cryptographic protocols: Security proofs 
and impossibility results." IACR ePrint (2012)



Basic Idea of Effective Countermeasures



Basic Idea of Effective Countermeasures

• Erase the CRP used in the protocol execution after the protocol



Basic Idea of Effective Countermeasures

• Erase the CRP used in the protocol execution after the protocol

• Attackers will have no way to re-access the secret response 

value



Basic Idea of Effective Countermeasures

• Erase the CRP used in the protocol execution after the protocol

• Attackers will have no way to re-access the secret response 

value

• Can a reconfigurable PUF solve the problem?



Basic Idea of Effective Countermeasures

• Erase the CRP used in the protocol execution after the protocol

• Attackers will have no way to re-access the secret response 

value

• Can a reconfigurable PUF solve the problem?

• A Reconfigurable PUF allows users to alter the responses of all

challenges in one single operation (so-called “Reconfiguration”).

Stefan Katzenbeisser, et al. "Recyclable pufs: Logically reconfigurable pufs." Journal of 
Cryptographic Engineering (2011)



Multi-Party Use Case

Using reconfigurable PUFs in crypto protocols cannot support multi-party 
use case.



Erasable PUFs

• Allows users to erase/alter the response of individual challenges 

chosen by the users



Erasable PUFs

• Allows users to erase/alter the response of individual challenges 

chosen by the users

• Erasable PUF-based crypto protocols can allow multiple parties 

to share one PUF and avoid repeated physical transfer of the 

PUF



Erasable PUFs

• Allows users to erase/alter the response of individual challenges 

chosen by the users

• Erasable PUF-based crypto protocols can allow multiple parties 

to share one PUF and avoid repeated physical transfer of the 

PUF

• Users can only erase the used CRPs after protocol execution, 

without affecting the other CRPs



Basic Idea to Realize Erasable PUFs



Basic Idea to Realize Erasable PUFs

• Add an interface around a PUF to enforce access control to the 

PUF



Basic Idea to Realize Erasable PUFs

• Add an interface around a PUF to enforce access control to the 

PUF

• Create a list of erased challenges



Basic Idea to Realize Erasable PUFs

• Add an interface around a PUF to enforce access control to the 

PUF

• Create a list of erased challenges

• If a queried challenge is in the list of erased challenges, then the 

interface should deny the access to the PUF



Basic Idea to Realize Erasable PUFs

• Add an interface around a PUF to enforce access control to the 

PUF

• Create a list of erased challenges

• If a queried challenge is in the list of erased challenges, then the 

interface should deny the access to the PUF

• Otherwise, the interface will allow the PUF to be queried, and 

the response will be generated and outputted. 



Basic Idea to Realize Erasable PUFs

• Add an interface around a PUF to enforce access control to the 

PUF

• Create a list of erased challenges

• If a queried challenge is in the list of erased challenges, then the 

interface should deny the access to the PUF

• Otherwise, the interface will allow the PUF to be queried, and 

the response will be generated and outputted. 

• Add new challenges into the list to erase them logically



Basic Idea to Realize Erasable PUFs

• Add an interface around a PUF to enforce access control to the 

PUF

• Create a list of erased challenges

• If a queried challenge is in the list of erased challenges, then the 

interface should deny the access to the PUF

• Otherwise, the interface will allow the PUF to be queried, and 

the response will be generated and outputted. 

• Add new challenges into the list to erase them logically

• Drawback: The list should not be tampered with by adversaries, 

but the size of the list is growing when more and more 

challenges are erased. This implies that a large trusted memory 

is needed



Our Solution: Genie PUFs



Our Solution: Genie PUFs

• Generic Erasable PUFs (Genie PUFs), because its just a PUF 

interface, and it can be integrated with any PUFs



Our Solution: Genie PUFs

• Generic Erasable PUFs (Genie PUFs), because its just a PUF 

interface, and it can be integrated with any PUFs

• Goal: Reduce the size of trusted memory in the trusted 

computing base (TCB)



Our Solution: Genie PUFs

• Generic Erasable PUFs (Genie PUFs), because its just a PUF 

interface, and it can be integrated with any PUFs

• Goal: Reduce the size of trusted memory in the trusted 

computing base (TCB)

• Key Idea: Merge Authenticated Search Tree and Red-Black Tree

structure to securely outsource the list of erased challenges to 

untrusted memory



Our Solution: Genie PUFs

• Generic Erasable PUFs (Genie PUFs), because its just a PUF 

interface, and it can be integrated with any PUFs

• Goal: Reduce the size of trusted memory in the trusted 

computing base (TCB)

• Key Idea: Merge Authenticated Search Tree and Red-Black Tree

structure to securely outsource the list of erased challenges to 

untrusted memory

• What can we achieve?



Our Solution: Genie PUFs

• Generic Erasable PUFs (Genie PUFs), because its just a PUF 

interface, and it can be integrated with any PUFs

• Goal: Reduce the size of trusted memory in the trusted 

computing base (TCB)

• Key Idea: Merge Authenticated Search Tree and Red-Black Tree

structure to securely outsource the list of erased challenges to 

untrusted memory

• What can we achieve?

• Only require a constant-sized trusted memory in the TCB to 

store the root hash of the tree structure



Our Solution: Genie PUFs

• Generic Erasable PUFs (Genie PUFs), because its just a PUF 

interface, and it can be integrated with any PUFs

• Goal: Reduce the size of trusted memory in the trusted 

computing base (TCB)

• Key Idea: Merge Authenticated Search Tree and Red-Black Tree

structure to securely outsource the list of erased challenges to 

untrusted memory

• What can we achieve?

• Only require a constant-sized trusted memory in the TCB to 

store the root hash of the tree structure

• Support arbitrarily large list of erased challenges



Our Solution: Genie PUFs

• Generic Erasable PUFs (Genie PUFs), because its just a PUF 

interface, and it can be integrated with any PUFs

• Goal: Reduce the size of trusted memory in the trusted 

computing base (TCB)

• Key Idea: Merge Authenticated Search Tree and Red-Black Tree

structure to securely outsource the list of erased challenges to 

untrusted memory

• What can we achieve?

• Only require a constant-sized trusted memory in the TCB to 

store the root hash of the tree structure

• Support arbitrarily large list of erased challenges

• Using the combined tree structure, the untrusted memory can 

provide a O(log(N)) size proof to the TCB to prove a challenge is 

(not) in the list of size N



Authenticated Search Tree Construction

c0, h0 = H (c0, h1, h2)

c3, h3 = H (c3, 0, 0) c4, h4 = H (c4, 0, 0) c5, h5 = H (c5, 0, 0)

c1, h1 = H (c1, h3, h4) c2, h2 = H (c2, h5, 0)



Authenticated Search Tree Construction

c0, h0 = H (c0, h1, h2)

c3, h3 = H (c3, 0, 0) c4, h4 = H (c4, 0, 0) c5, h5 = H (c5, 0, 0)

c1, h1 = H (c1, h3, h4) c2, h2 = H (c2, h5, 0)

• In each node of the tree, we store one unique challenge, and the tree 
is sorted like a binary search tree according to the challenge value in 
each node



Authenticated Search Tree Construction

c0, h0 = H (c0, h1, h2)

c3, h3 = H (c3, 0, 0) c4, h4 = H (c4, 0, 0) c5, h5 = H (c5, 0, 0)

c1, h1 = H (c1, h3, h4) c2, h2 = H (c2, h5, 0)

• In each node of the tree, we store one unique challenge, and the tree 
is sorted like a binary search tree according to the challenge value in 
each node

• Besides the challenge ci , a hash value is stored in each node, 
where hi = H (ci, hash value stored in its left child, hash value 
stored in its right child)



Authenticated Search Tree Construction

c0, h0 = H (c0, h1, h2)

c3, h3 = H (c3, 0, 0) c4, h4 = H (c4, 0, 0) c5, h5 = H (c5, 0, 0)

c1, h1 = H (c1, h3, h4) c2, h2 = H (c2, h5, 0)

• In each node of the tree, we store one unique challenge, and the tree 
is sorted like a binary search tree according to the challenge value in 
each node

• Besides the challenge ci , a hash value is stored in each node, 
where hi = H (ci, hash value stored in its left child, hash value 
stored in its right child)

Root Hash



GeniePUF Architecture

Red-Black-Tree 
(List)

Red-Black Tree 
Interface

Trusted Computing Base 
(Hardware) of GeniePUF

Public, Untrusted 
System Part (Software)

Underlying 
Strong PUF

Control Logic.
Stores RootHash



Read-Out Operation of Genie PUF



Read-Out Operation of Genie PUF

①



Read-Out Operation of Genie PUF

①

②



Read-Out Operation of Genie PUF

①

②

③



Read-Out Operation of Genie PUF

①

②

③

④



Read-Out Operation of Genie PUF

①

②

③

④

⑤



Read-Out Operation of Genie PUF

①

②

③

④

⑤

⑥



Erasure Operation of Genie PUF



Erasure Operation of Genie PUF

①



Erasure Operation of Genie PUF

①

②



Erasure Operation of Genie PUF

①

②

③



Erasure Operation of Genie PUF

①

②

③

④



Erasure Operation of Genie PUF

①

②

③

④ ⑤



Erasure Operation of Genie PUF

①

②

③

④ ⑤
⑥



Erasure Operation of Genie PUF

①

②

③

④ ⑤
⑥

⑦



Erasure Operation of Genie PUF

①

②

③

④ ⑤
⑥

⑦

⑧



Performance Evaluation

• Implement the TCB on Zynq FPGA (HW) and the RB Tree Interface on Processor (SW)
• Latency grows logarithmically w.r.t. the number of erased challenges

Log Axis



Security Analysis

• Security Assumptions for Genie PUFs

1. Adversaries cannot circumvent the Control Logic (CL), applying their 
own challenges directly to the underlying Strong PUF, reading out the 
corresponding responses ri.

2. Adversaries cannot modify the CL, for example such that it cannot 
correctly verify the validity of PROOF. 

3. Adversaries may read the stored RootHash, but not modify it. It is 
public, but authentic.



A New Definitional Framework of PUFs

• Easily accessible, yet precise style PUF definition

• Parameterized Game-based PUF definition (𝜖, 𝑡𝑎𝑡𝑡 , 𝑘)

• Intuition of Secure Erasable PUF Definition:

The security of an erasable PUF is measured by the upper bound 𝜖
of the accuracy of guessing one out of 𝑘 randomly chosen CRPs 

by an attacker which takes time 𝑡𝑎𝑡𝑡 for computation, physical 

actions, and 𝑘 times game interactions with the challenger, where 

in each game interaction a randomly chosen CRP is erased. 



Main Results of Formal Analysis

• Erasable PUFs are Strong PUFs

• Let 𝑃 be a (𝑘, 𝑡𝑎𝑡𝑡 , 𝜖)-secure Erasable PUF with respect to some 

adversary A. Then 𝑃 is a (𝑘, 𝑡𝑎𝑡𝑡, 𝜖)-secure Strong PUF with 

respect to the same adversary A.

• The Security of Genie PUFs

• Let 𝑃 be a PUF with challenge set 𝐶𝑃 . Let A be an adversary for 

GeniePUF(𝑃). Then GeniePUF(𝑃) is (𝑘, 𝑡𝑎𝑡𝑡, 𝜖 + 𝜌)-secure 

Erasable PUF with respect to A, where 𝜌 represents the collision 

probability of the used hash function.



Conclusion

• Fixed the issue of PUF re-use model in PUF-based 

cryptographic protocols by using erasable PUFs.

• Introduced a generic erasable PUF design (Genie PUF) that can 

turn any strong PUFs to erasable PUFs.

• Proposed a rigorous, yet easily accessible definitional 

framework of PUF and proved our main theorems in the 

framework



Thank you for your attention!

Questions?



Authenticated Search Tree Proof Generation

c0, h0 = H (c0, h1, h2)

c3, h3 = H (c3, 0, 0) c4, h4 = H (c4, 0, 0) c5, h5 = H (c5, 0, 0)

c1, h1 = H (c1, h3, h4) c2, h2 = H (c2, h5, 0)

cnew

1. Locate where the new challenge is supposed to be stored
2. Find a path from the new node for cnew to the root
3. Fetch all the challenge values and all sibling hash values to construct a proof 

of (non)-existence



Red-Black Tree Background

• Self-balancing Binary Search Tree

• Guarantee O(log N) worst-case search time with a tree of size N


