
PG: Byzantine Fault-Tolerant and Privacy-Preserving
Sensor Fusion with Guaranteed Output Delivery

Chenglu Jin*1, Chao Yin*2,1, Marten van Dijk1,2, Sisi Duan3,

Fabio Massacci2, Michael K. Reiter4, Haibin Zhang5

Email: chenglu.jin@cwi.nl

* Shared first-authorship
1 Centrum Wiskunde & Informatica (CWI Amsterdam), 2Vrije University Amsterdam, 3Tsinghua

University, 4Duke University, 5Yangtze Delta Region Institute of Tsinghua University, Zhejiang

Published at ACM Conference on Computer and Communications Security (CCS) 2024

Outline

▪ Technical overview

▪ Background

▪ P0, privacy-preserving and fault-tolerant

▪ P1, achieving guaranteed output delivery (GOD) in the crash failure model

▪ P2, achieving GOD in the Byzantine failure model

▪ P3, realizing privacy against malicious servers

▪ Implementation Optimizations

▪ Experimental evaluation

Sensor Data Fusion

▪ Combine multiple sensor data to produce more dependable and accurate
information. E.g., sensor networks, smart metering.

▪ In particular, we are focusing on the client-server-sensor model.

▪ Pollution attack: a small fraction of faulty sensor data can lead to a large error in
the aggregated result.

S

S

S

S

AC

S

Client Server

Sensors

Avg = 52

100

100

18

20

22

PG: Privacy-Preserving and Fault-Tolerant Sensor Fusion

1. Fault tolerant algorithms (FTA).

• Formally defend against pollution attacks given a bound of the fraction of malicious sensors among
all the sensors.

• E.g. Marzullo's algorithm ensures that the result must contain the correct value if at most g out of
2g+1 sensors are malicious

S

S

S

S

AC

S

Client
Server

Sensors

PG: Privacy-Preserving and Fault-Tolerant Sensor Fusion

1. Fault tolerant algorithms (FTA).

• Formally defend against pollution attacks given a bound of the fraction of malicious sensors among
all the sensors.

• E.g. Marzullo's algorithm ensures that the result must contain the correct value if at most g out of
2g+1 sensors are malicious

2. Garbled circuits (GC).

• Privacy: protect the privacy of individual sensor inputs

• Authenticity: the server should faithfully return the client the aggregated result rather than some
arbitrary values.

S

S

S

S

AC

S

Client
Server

Sensors

only learns the output learns nothing

Security Assumption:

server and sensors do not

collude

Semi-honest
Semi-honest

Malicious sensors

can collude

Marzullo’s Algorithms

▪ One of the fault-tolerant sensor averaging algorithms we have studied in our paper.

▪ It can tolerate g faulty inputs out of 2g+1 sensor inputs.

▪ Each sensor input is represented by an interval, which contains the midpoint and
accuracy information.

 E.g. a sensor input can be (9, 14)

Resulting interval

9 14

12

11

17

16

13 18

16 21

Garbled Circuits

▪ Initially designed for secure two-party computation.

▪ Millionaires' problem

Who is richer, while keeping privacy?

Without a trusted third party?

Jeff Bezos Elon Musk

Garbled Circuits

AND

x y

z

Alice, x

Generator

Bob, y

Evaluator

x AND y = ?

Garbled Circuits

AND

x y

zk0z, k1z
Alice, x

Generator

Bob, y

Evaluatork0x, k1x k0y, k1y

Randomly Chosen Labels

x AND y = ?

Garbled Circuits

AND

x y

zk0z, k1z
Alice, x

Generator

Bob, y

Evaluatork0x, k1x k0y, k1y

Ek0x
(Ek0y

(k0z))

Ek0x
(Ek1y

(k0z))

Ek1x
(Ek0y

(k0z))

Ek1x
(Ek1y

(k1z))

Randomly Chosen Labels

x AND y = ?

Garbled Circuits

AND

x y

zk0z, k1z
Alice, x

Generator

Bob, y

Evaluatork0x, k1x k0y, k1y

Ek0x
(Ek0y

(k0z))

Ek0x
(Ek1y

(k0z))

Ek1x
(Ek0y

(k0z))

Ek1x
(Ek1y

(k1z))

Ek1x
(Ek1y

(k1z))

Ek0x
(Ek1y

(k0z))

Randomly Chosen Labels

x AND y = ?

Garbled Circuits

AND

x y

zk0z, k1z
Alice, x

Generator

Bob, y

Evaluatork0x, k1x k0y, k1y

Ek0x
(Ek0y

(k0z))

Ek0x
(Ek1y

(k0z))

Ek1x
(Ek0y

(k0z))

Ek1x
(Ek1y

(k1z))

Ek1x
(Ek1y

(k1z))

Ek0x
(Ek1y

(k0z))

Randomly Chosen Labels

x AND y = ?

Garbled Circuits

AND

x y

zk0z, k1z
Alice, x

Generator

Bob, y

Evaluatork0x, k1x k0y, k1y

Ek0x
(Ek0y

(k0z))

Ek0x
(Ek1y

(k0z))

Ek1x
(Ek0y

(k0z))

Ek1x
(Ek1y

(k1z))

Ek1x
(Ek1y

(k1z))

Ek0x
(Ek1y

(k0z))

k1x

Randomly Chosen Labels

x AND y = ?

Garbled Circuits

AND

x y

zk0z, k1z
Alice, x

Generator

Bob, y

Evaluatork0x, k1x k0y, k1y

Ek0x
(Ek0y

(k0z))

Ek0x
(Ek1y

(k0z))

Ek1x
(Ek0y

(k0z))

Ek1x
(Ek1y

(k1z))

Ek1x
(Ek1y

(k1z))

Ek0x
(Ek1y

(k0z))

k1x

Randomly Chosen Labels

x AND y = ?

Garbled Circuits

AND

x y

zk0z, k1z
Alice, x

Generator

Bob, y

Evaluatork0x, k1x k0y, k1y

Ek0x
(Ek0y

(k0z))

Ek0x
(Ek1y

(k0z))

Ek1x
(Ek0y

(k0z))

Ek1x
(Ek1y

(k1z))

Ek1x
(Ek1y

(k1z))

Ek0x
(Ek1y

(k0z))

k1x

Oblivious Transfer(k1y)

Randomly Chosen Labels

x AND y = ?

Garbled Circuits

AND

x y

zk0z, k1z
Alice, x

Generator

Bob, y

Evaluatork0x, k1x k0y, k1y

Ek0x
(Ek0y

(k0z))

Ek0x
(Ek1y

(k0z))

Ek1x
(Ek0y

(k0z))

Ek1x
(Ek1y

(k1z))

Ek1x
(Ek1y

(k1z))

Ek0x
(Ek1y

(k0z))

k1x

Oblivious Transfer(k1y)

Randomly Chosen Labels

x AND y = ?

Garbled Circuits

AND

x y

zk0z, k1z
Alice, x

Generator

Bob, y

Evaluatork0x, k1x k0y, k1y

Ek0x
(Ek0y

(k0z))

Ek0x
(Ek1y

(k0z))

Ek1x
(Ek0y

(k0z))

Ek1x
(Ek1y

(k1z))

Ek1x
(Ek1y

(k1z))

Ek0x
(Ek1y

(k0z))

k1x

Oblivious Transfer(k1y)

Open Ek1x
(Ek1y

(k1z))

Randomly Chosen Labels

Only one

ciphertext will

be decrypted

x AND y = ?

Garbled Circuits

AND

x y

zk0z, k1z
Alice, x

Generator

Bob, y

Evaluatork0x, k1x k0y, k1y

Ek0x
(Ek0y

(k0z))

Ek0x
(Ek1y

(k0z))

Ek1x
(Ek0y

(k0z))

Ek1x
(Ek1y

(k1z))

Ek1x
(Ek1y

(k1z))

Ek0x
(Ek1y

(k0z))

• Reveals nothing more than the output, due to the random label encoding.

• Each party’s private input remains secret to the other party.

k1x

Oblivious Transfer(k1y)

Open Ek1x
(Ek1y

(k1z))

Randomly Chosen Labels

Only one

ciphertext will

be decrypted

x AND y = ?

P0: Apply GC and FTA to Our System

▪ We use a pre-shared secret key between the client and each sensor to derive the same
randomness needed to garble the circuit or the inputs

▪ This key should not be exposed to the server.

1. The client garbles a fault-tolerant algorithm f() that performs the sensor fusion and sends
the garbled circuit Gb(f) to the server.

2. Server fetches garbled inputs En(Xi) from the sensors

3. Server evaluates the garbled circuit

4. Garbled output Y is sent to Client

5. Client decodes De(Y) to get f(X)

• Input Privacy

• Output integrity

• Tolerate incorrect sensor inputs

S

S

S

S

AC

S

Client

= Garbled

circuit generator

Server

= Garbled

circuit evaluator
Sensors

= Garbled inputs providers

P1: Achieving GOD in the Crash Failure Model
▪ The completion of P0 protocol requires all the sensors to provide an input.

▪ Easy DoS attack by compromising just one sensor and not sending anything.

▪ One more round of interaction: if the server does not receive all the garbled inputs
before a timer expires, it requests from the client for the missing sensor inputs that
will encode the minimum or maximum.

▪ The missing inputs become faulty inputs that will be tolerated by FTA

▪ GOD is achievable because our protocol is fault-tolerant.

S

S

S

S

AC

S

Client
Server

Sensors

Missing sensor list

En(min) or En(max)

P2: Achieving GOD in the Byzantine Failure Model

▪ Byzantine failure model means the malicious sensors can do anything they want

▪ Sensors may send ill-formed inputs (not correctly garbled inputs)

▪ Easy DoS attack by compromising one sensor and always sending ill-formed
inputs. The aggregated result is not decodable by the client. It cannot be caught
by the client, due to the privacy guarantee of GC.

▪ Same protocol interaction as P1, but adding checking gates (encrypted truth
tables) besides the functional circuit to detect ill-formed inputs:

 All-zero-strings, instead of output labels, are encrypted by valid input labels pairs

 If all inputs from a sensor pass the check, use them in the functional circuit; otherwise request
valid labels that encode minimum/maximum from the client.

 For N-bit inputs, we need to add additional N/2 checking gates, regardless of the functional
circuit

Recap: Byzantine Malicious Sensors

▪ What can a (group of) Byzantine malicious sensor(s) do?

Byzantine
Sensors

Send
something

Correct
garbling

Correct
value

Honest
behavior

Incorrect
value

P0

Incorrect
garbling

P2

Not send
anything

P1

As long as the total number of malicious sensors does not exceed the threshold of the fault-tolerant

algorithm, all combinations of possible colluding malicious behaviors will be tolerated

From Semi-Honest Server to Malicious Server

▪ What a malicious server can do without being detected by the client?

 A detectable malicious behavior (e.g., not responding) can be solved by switching to a different server

▪ Traditional garbled circuit is secure against a malicious evaluator

▪ Malicious server controls the list of sensors that did not provide valid sensor labels,
and this list will be sent to the client for requesting the missing input labels

▪ A malicious server may manipulate the list and request a set of valid inputs of honest
sensors from the client

 It will obtain two sets of valid input labels of the same set of wires, allowing the malicious server to
evaluate the same circuit with multiple different inputs.

 Tamper with the final result by flipping some of the input wires (integrity violation)

 Differential analysis on the computation results may leak honest sensor’s input values (privacy violation)

 With FreeXOR optimization, leaking one pair of valid labels on the same wire exposes all of the valid
labels on all of the wires in the same circuit.

P3: Secure against a Malicious Server

▪ Filter gate (encrypted truth table): if the server
“claims” some sensor input labels are missing/ill-
formed, the client sends labels to help decrypt one
row of the truth table to get valid output labels that
encodes the min/max; otherwise the client sends labels
to forward the sematic values of sensor inputs to the
output labels.

▪ Implicitly transfer the max/min values of the functional
circuit inputs via the filter gate truth tables

▪ Guarantee: at most one label per wire can be
revealed to the server

▪ Still need to assume that the malicious server and the
malicious sensors do not collude

Functional

circuit

Client

Sensor 1

Sensor 2

Sensor 3

Sensor 4

1 1

?
1

0

1 0

$%^

0 0

0 1

Ek0s
(Ek1c

(k0F))

Ek0c
(k0F))

Ek1s
(Ek1c

(k1F))

Circuit Design of Marzullo’s Algorithm

Why “modified” sorting network?

• Compare the two endpoints provided by each sensor to figure out left and right

• Mark each endpoint with an additional sign bit (1 or 0), indicating it is the left/right one

• Sort all endpoints according to the values of endpoints, and the sign bits need to move together

with their associated endpoints.

• Additional checking required by individual algorithms.

Sorting

Endpoints

Sweeping

Line

Index Select & Max Value Min Index

• One prefix sum can be shared for
finding both the left index and the right
index

• Algorithm specific optimization can
reduce the width of modules and save
75% ~ 84% from a straightforward
implementation

Sign bits

g

Left endpoint of the result

More Algorithms

Cloud Evaluation

▪ Modified a two party garbled circuit framework, TinyGarble, to fit our sensor-
server-client setting

▪ Simulated a sensor network on AWS cloud. Each sensor/server/client is one AWS
node. Used up to 261 sensor nodes

▪ System latency scales well with the number of sensors

Failure-free vs Failure Performance of P3

▪ Latency is smaller in the failure scenario because the server skips the communication
with the failed sensors

Cyber-Physical System Implementation

▪ Implemented PG.P1 in a cyber-
physical system setting, and
evaluated its performance using
up to 19 Raspberry Pi Zero W.

▪ The client is a commercial
laptop, and the server is a
desktop.

▪ The server and all the sensors
are communicated over WiFi
via a router.

▪ The client and the server are
connected by an Ethernet cable.

CPS Evaluation

▪ The performance is scalable.

▪ Not as fast as the cloud due to the local WiFi connection and a computationally
constrained devices emulating the sensors

Summary

▪ Design an efficient and scalable framework for privacy-preserving and Byzantine
fault-tolerant sensor fusion. It fits the resource constrained sensors.

▪ Develop new techniques to achieve guaranteed output delivery in GC when a
fraction of sensors are Byzantine malicious.

▪ Extend our system to be secure against a malicious server.

▪ Optimize the circuits designs realizing the fault-tolerant sensor fusion algorithms.

▪ Evaluate the performance of our system on AWS cloud with up to 261 sensors and a
cyber-physical system with up to 19 sensors.

▪ Source code: https://figshare.com/articles/software/PG_source_code/25669026

Thank you! Questions? Email: chenglu.jin@cwi.nl

	Slide 1: PG: Byzantine Fault-Tolerant and Privacy-Preserving Sensor Fusion with Guaranteed Output Delivery
	Slide 2: Outline
	Slide 3: Sensor Data Fusion
	Slide 4: PG: Privacy-Preserving and Fault-Tolerant Sensor Fusion
	Slide 5: PG: Privacy-Preserving and Fault-Tolerant Sensor Fusion
	Slide 6: Marzullo’s Algorithms
	Slide 7: Garbled Circuits
	Slide 8: Garbled Circuits
	Slide 9: Garbled Circuits
	Slide 10: Garbled Circuits
	Slide 11: Garbled Circuits
	Slide 12: Garbled Circuits
	Slide 13: Garbled Circuits
	Slide 14: Garbled Circuits
	Slide 15: Garbled Circuits
	Slide 16: Garbled Circuits
	Slide 17: Garbled Circuits
	Slide 18: Garbled Circuits
	Slide 19: P0: Apply GC and FTA to Our System
	Slide 20: P1: Achieving GOD in the Crash Failure Model
	Slide 21: P2: Achieving GOD in the Byzantine Failure Model
	Slide 22: Recap: Byzantine Malicious Sensors
	Slide 23: From Semi-Honest Server to Malicious Server
	Slide 24: P3: Secure against a Malicious Server
	Slide 25: Circuit Design of Marzullo’s Algorithm
	Slide 26: Index Select & Max Value Min Index
	Slide 27: More Algorithms
	Slide 28: Cloud Evaluation
	Slide 29: Failure-free vs Failure Performance of P3
	Slide 30: Cyber-Physical System Implementation
	Slide 31: CPS Evaluation
	Slide 32: Summary

