
PG: Byzantine Fault-Tolerant and Privacy-Preserving
Sensor Fusion with Guaranteed Output Delivery

Chenglu Jin*1, Chao Yin*2,1, Marten van Dijk1,2, Sisi Duan3,

Fabio Massacci2, Michael K. Reiter4, Haibin Zhang5

Email: chenglu.jin@cwi.nl

* Shared first-authorship
1 Centrum Wiskunde & Informatica (CWI) Amsterdam, 2Vrije University Amsterdam, 3Tsinghua

University, 4Duke University, 5Yangtze Delta Region Institute of Tsinghua University, Zhejiang

Outline

▪ Technical overview

▪ Background

▪ P0, privacy-preserving and fault-tolerant

▪ P1, achieving guaranteed output delivery (GOD) in the crash failure model

▪ P2, achieving GOD in the Byzantine failure model

▪ P3, realizing privacy against malicious servers

▪ Experimental evaluation

Sensor Data Fusion

▪ Combine multiple sensor data to produce more dependable and accurate
information. E.g., sensor networks, smart metering.

▪ In particular, we are focusing on the client-server-sensor model.

▪ Pollution attack: a small fraction of faulty sensor data can lead to a large error in
the aggregated result.

S

S

S

S

AC

S

Client Server

Sensors

Avg = 52

100

100

18

20

22

PG: Privacy-Preserving and Fault-Tolerant Sensor Fusion

1. Fault tolerant algorithms (FTA).

• Formally defend against pollution attacks given a bound of the fraction of malicious sensors among
all the sensors.

• E.g. Marzullo's algorithm ensures that the result must contain the correct value if at most g out of
2g+1 sensors are malicious

S

S

S

S

AC

S

Client
Server

Sensors

PG: Privacy-Preserving and Fault-Tolerant Sensor Fusion

1. Fault tolerant algorithms (FTA).

• Formally defend against pollution attacks given a bound of the fraction of malicious sensors among
all the sensors.

• E.g. Marzullo's algorithm ensures that the result must contain the correct value if at most g out of
2g+1 sensors are malicious

2. Garbled circuits (GC).

• Privacy: protect the privacy of individual sensor inputs

• Authenticity: the server should faithfully return the client the aggregated result rather than some
arbitrary values.

S

S

S

S

AC

S

Client
Server

Sensors

only learns the output learns nothing

Security Assumption:

server and sensors do not

collude

Semi-honest
Semi-honest

Malicious sensors

can collude

Garbled Circuits

AND

x y

zk0z, k1z

k0x, k1x k0y, k1y

Ek0x
(Ek0y

(k0z))

Ek0x
(Ek1y

(k0z))

Ek1x
(Ek0y

(k0z))

Ek1x
(Ek1y

(k1z))

Ek1x
(Ek1y

(k1z))

Ek0x
(Ek1y

(k0z))

• Reveals nothing more than the output, because of the randomly chosen labels

Boolean gate Encrypted Truth Table

k0z, k1z0,1

Bit values on each wire Randomly Chosen Labels

Only one

ciphertext will

be decrypted

P0: Apply GC and FTA to Our System

▪ We use a pre-shared secret key between the client and each sensor to derive the
same randomness needed to garble the circuit or the inputs

▪ This key should not be exposed to the server.

1. The client garbles a fault-tolerant algorithm f() that performs the sensor fusion
and sends the garbled circuit Gb(f) to the server.

2. Server fetches garbled inputs En(Xi) from the sensors

3. Server evaluates the garbled circuit

4. Garbled output Y is sent to Client

5. Client decodes De(Y) to get f(X)

• Input Privacy

• Tolerate incorrect sensor inputs

S

S

S

S

AC

S

Client

= Garbled

circuit generator

Server

= Garbled

circuit evaluator
Sensors

= Garbled inputs providers

P1: Achieving GOD in the Crash Failure Model
▪ The completion of P0 protocol requires all the sensors to provide an input.

▪ Easy DoS attack by compromising just one sensor and not sending anything.

▪ One more round of interaction: if the server does not receive all the garbled inputs
before a timer expires, it requests from the client for the missing sensor inputs that
encode the minimum or maximum.

▪ The missing inputs become faulty inputs that will be tolerated by FTA

▪ GOD is achievable because our protocol is fault-tolerant.

S

S

S

S

AC

S

Client
Server

Sensors

Missing sensor list

En(min) or En(max)

P2: Achieving GOD in the Byzantine Failure Model

▪ Byzantine failure model means the malicious sensors can do anything they want

▪ Sensors may send ill-formed inputs (not correctly garbled inputs)

▪ Easy DoS attack by compromising one sensor and always sending ill-formed
inputs. The aggregated result is not decodable by the client.

▪ Adding checking gates (encrypted truth tables) besides the functional circuit to
detect ill-formed inputs:

 All-zero-strings, instead of output labels, are encrypted by valid input labels pairs

 If all inputs from a sensor pass the check, use them in the functional circuit; otherwise request
valid labels that encode minimum/maximum from the client.

 For N-bit inputs, we need to add additional N/2 checking gates

▪ Cover all possible behaviors of the malicious sensors: not sending anything,
sending ill-formed values, sending valid but incorrect values

P3: Secure against a Malicious Server

▪ A malicious server may trick the client and ask for a valid
input of an honest sensor, such that it gets two valid
labels of the same wire in the circuit.

 Violation of privacy and authenticity.

▪ Filter gate (encrypted truth table): if the server “claims”
some sensor input labels are missing/ill-formed, the client
sends labels to help decrypt one row of the truth table to
get valid output labels that encodes the min/max;
otherwise the client sends labels to forward the sematic
values of sensor inputs to the output labels.

▪ Implicitly transfer the max/min values of the functional
circuit inputs via the filter gate truth tables

▪ Guarantee: at most one label per wire can be revealed
to the server

▪ Still need to assume that the malicious server and the
malicious sensors do not collude

Functional

circuit

Client

Sensor 1

Sensor 2

Sensor 3

Sensor 4

1 1

?
1

0

1 0

$%^

0 0

0 1

Performance Evaluation

▪ Five fault tolerant sensor fusion algorithms, together with their optimized circuit designs.

▪ Cloud-based evaluation: Each sensor/server/client is one AWS node. Used up to 261
sensor nodes

▪ CPS-based evaluation: up to 19 sensors (Raspberry Pi Zero W) with Wifi connection

Check out our

paper for

details

Summary

▪ Design an efficient and scalable framework for privacy-preserving and Byzantine
fault-tolerant sensor fusion. It fits the resource constrained sensors.

▪ Develop new techniques to achieve guaranteed output delivery in GC when a
fraction of sensors are Byzantine malicious.

▪ Extend our system to be secure against a malicious server.

▪ Optimize the circuits designs realizing the fault-tolerant sensor fusion algorithms.

▪ Evaluate the performance of our system on AWS cloud with up to 261 sensors and a
cyber-physical system with up to 19 sensors.

▪ Source code: https://figshare.com/articles/software/PG_source_code/25669026

Thank you! Questions? Email: chenglu.jin@cwi.nl

	Slide 1: PG: Byzantine Fault-Tolerant and Privacy-Preserving Sensor Fusion with Guaranteed Output Delivery
	Slide 2: Outline
	Slide 3: Sensor Data Fusion
	Slide 4: PG: Privacy-Preserving and Fault-Tolerant Sensor Fusion
	Slide 5: PG: Privacy-Preserving and Fault-Tolerant Sensor Fusion
	Slide 6: Garbled Circuits
	Slide 7: P0: Apply GC and FTA to Our System
	Slide 8: P1: Achieving GOD in the Crash Failure Model
	Slide 9: P2: Achieving GOD in the Byzantine Failure Model
	Slide 10: P3: Secure against a Malicious Server
	Slide 11: Performance Evaluation
	Slide 12: Summary

