
Optimizing Proof of Aliveness in
Cyber-Physical Systems

Zheng Yang1, Chenglu Jin2, Xuelian Cao1, Marten van Dijk2, Jianying Zhou3

1 Southwest University,
2 CWI Amsterdam,

3 Singapore University of Technology and Design

*Yang and Jin share the first authorship.

Published at IEEE IEEE Transactions on Dependable and Secure Computing 2024

Aliveness of devices in cyber-physical
systems

• Aliveness ≈ Continue functioning
as designed

• Importance of Aliveness:

° Work collaboratively

° Critical components

° Blackout

° Safety critical components

° Triton targeting safety instrumented
systems (SIS)

Check the aliveness

• Track the running status of the devices

• Immediately raise alarm, and fix it

Remote MonitorOn-site check

Challenge in checking the aliveness remotely

• Inject fake data against automatic check

• Hard to identify the death promptly

Client Serverwatch-man

data

Fake data

This work: Proof of Aliveness

• Cryptographic notion - PoA

° Two-party protocol: prover (client), verifier (server)

° Heartbeat pattern: the prover periodically sends proofs to a verifier with a
fixed time interval ∆𝑠, e.g., every ∆𝑠=30 seconds

° Dead if no valid proof within aliveness tolerance time Tatt, e.g., Tatt=3 minutes

Prover: Client Verifier: Server

proofi

∆𝑠

Security model for PoA

• Adversary model: network attacker
• Eavesdropping, injecting, and replay attack are allowed
• Server can be compromised

• Security goal: no adversary can forge a valid aliveness proof (especially
when the prover is dead)

Prover: Client Verifier: Server

Send proofj
Get proofi

Get all info in the verifier

1 2

3

How to realize PoA

• Digital signature

° Inefficient for resource-constrained devices

• Message authentication code

° Subject to Server compromise attack

• Time-based one-time password

° Lightweight, rely on hash or one-way function (OWF)

° Server compromise resilience, e.g., T/Key [DMB17]

° Passwords=Proofs sent in a constant pace, every ∆𝑠 seconds

Single-chain PoA OWF from [Lam81]

• One-way function F: {0,1}𝑚 → {0,1}𝑚

• Easy to compute F, but very hard to compute F-1

• One-way function chain: Xi= Fi(X0), where X0 is random

Fx0 x1 F x2 F xN-1 F xN

Initial check-secret Initial verify-point

Usage direction TstartTend

Single-chain PoA OWF from [Lam81]

Prover: Client Verifier: Server

Proof: xi

Fx0 x1 F x2 F xN-1 F xN

Initial check-secret Initial verify-point

Verify-point xj (i+1 ≤j≤N)

Check xj ?= F (xi)

Update xj:=xi

x0

Usage direction TstartTend

Initialization: xN

OWF: limitation

• Finite number of proofs

• Does not match with the super long life time of CPS devices

• The total number of proofs N=1 million → 1 years with ∆𝑠=30
seconds intervals

• We need to auto-replenish the proofs by the protocol itself

• Assuming no long-term/master keys

Multiple-chain PoA OWF
PRG

Gss0 ss1 G ss2 G ss255 G ss256

Usage direction
Tstart Tend

F

x0

x1

F

x2

xN

1

1

1

1

F

x0

x1

F

x2

xN

2

2

2

2

F

x0

x1

F

x2

xN

256

256

256

256
Verify-points

Secret keys of OTS for Auto-replenishment

an 𝐎𝐖𝐅 instance

U
sa

g
e

d
ir

ec
ti

o
n

Tstart=Tstart

Tend

1

1

11

G: Pseudorandom

number generator

F: One-way

function

OTS: Lamport

One-Time

Signature

[Lam79] – based

on one-way

functions

PoA OWF
PRG - BF

Gss0 ss1 G ss2 G ss255 G ss256

Usage direction
Tstart Tend

F

x0

x1

F

x2

xN

1

1

1

1

F

x0

x1

F

x2

xN

2

2

2

2

F

x0

x1

F

x2

xN

256

256

256

256

an 𝐎𝐖𝐅 instance

U
sa

g
e

d
ir

ec
ti

o
n

Tstart=Tstart

Tend

1

1

12
Bloom Filter

(|| 1) (|| 2) (|| 256)

Bind to a
unique

identifier of
the subchain

Commitment-Based Replenishment
• OTS is secure forever, but can we use something weaker and more efficient?

• Yes. Hash-based commitment scheme, only secure before the commitment is open.

1. When sending X1, the prover also sends H(X0, New_Instance) to the verifier. H
is a collision resistant hash function.

2. In the end of the life time of the chain, the prover sends X0 and New_Instance
to the verifier

3. The verifier verifies X0 with the known info and then verifies New Instance
with H(X0, New_Instance) received previously.

• This replenishment also works on multi-chain structures

Fx0 x1 F x2 F xN-1 F xN

Head node Tail node

Optimal Caching Strategy

• Consider a memory sufficient device (more discussion on memory
insufficient devices in the paper)

• A memory efficient implementation that minimizes the proof generation
time: one F call per proof generation

• Break an N-node chain into 𝑁 segments of 𝑁 nodes.

• Memory requirement: 2 𝑁 nodes: 𝑁 checkpoints and 𝑁 cached
nodes

• When the i-th segment is being used in the reverse order, the (i-1)-th
segment is being computed in the forward order from its checkpoint and
overwrite the proof just used.

Caching Example

X90 X91 X92 X93 X94 X95 X96 X97 X98 X99

X0 X10 X20 X30 X40 X50 X60 X70 X80 X90

X90 X91 X92 X93 X94 X95 X96 X97 X81 X80

Checkpoints

One Segment

Suppose N = 100. Then we need 2 𝑁 = 20 node storage.

X90 X91 X92 X93 X94 X95 X96 X97 X98 X80

X90 X91 X92 X93 X94 X95 X96 X82 X81 X80

X90 X91 X92 X93 X94 X95 X83 X82 X81 X80

Performance evaluation

• Client – Raspberry Pi 3, server – laptop , N=222 (4 million)

• Random oracle (RO), Hash – SHA256, PRG – AES-CTR

• Standard model (STD), OWF – Subset-sum, PRG – [YLW13]

Protocol Setup Proof Generation
average/worst

Verification Replenishment

OWF STD 185.33 s 44.19 s / 44.19 s 4.12 s N/A

OWF RO - C 15.69 s 3.74 s / 3.74 s 0.47 s 11.22 s

OWF
PRG -BF RO 17.11 s 5.50 s / 18.00 s 0.47 s 2.65 ms

OWF
PRG -BF STD 192.48 s 45.5 s / 10.46 ms 4.12 s 5.28 s

Best on a
memory
sufficient
prover

Summary

• Cryptographic notion of Proof of Alievness
° Security model (not detailed in the talk)

° New security bounds in the standard model (not discussed in the
talk)

• Optimized PoA constructions and implementations
° Reduce the overall chain size: auto-replenishment

° Minimize the proof generation time: optimal caching strategy

° Reduce the server storage: Bloom filter

° Reduce the replenishment time: commitment scheme

° Performance evaluation on Raspberry Pi.

	Slide 1: Optimizing Proof of Aliveness in Cyber-Physical Systems
	Slide 2: Aliveness of devices in cyber-physical systems
	Slide 3: Check the aliveness
	Slide 4: Challenge in checking the aliveness remotely
	Slide 5: This work: Proof of Aliveness
	Slide 6: Security model for PoA
	Slide 7: How to realize PoA
	Slide 8: Single-chain PoA sub OWF to the from [Lam81]
	Slide 9: Single-chain PoA sub OWF to the from [Lam81]
	Slide 10: sub OWF to the : limitation
	Slide 11: Multiple-chain PoA sub OWF to the PRG
	Slide 12: PoA sub OWF to the PRG - BF
	Slide 13: Commitment-Based Replenishment
	Slide 14: Optimal Caching Strategy
	Slide 15: Caching Example
	Slide 16: Performance evaluation
	Slide 17: Summary

