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Hardware / Physical Security

• Current researches are more focused on cyber 

security issues of smart grids. 

• This implicitly assumes that the underlying hardware 

is trusted.

• i.e. The hardware is doing and only doing what 

is supposed to do. 

• But this may not the case in the real life. 

• Malicious hardware manufacturers can introduce 

malicious modifications, so called hardware Trojans, 

into their designs. 

• We have to start questioning trustworthiness of the 

underlying hardware. 
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• It is still very hard to completely 

eliminate/ detect hardware 

Trojans in a large chip.

• Instead, we minimize the 

damage of a hardware Trojan.  
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Synchronized SporadicVS

Failure in large portion (or every node)

of the smart grid at the same time
Sporadic single node failures.

Our mitigation strategy is to converte a synchronized 

hardware Trojan attack into sporadic single node failures. 



Online vs Offline Trojans

▪ Online Hardware Trojans:

• The attackers have connection and controllability of the chips (Trojans) after they 
are deployed. 

• It also requires the attackers to first penetrate the network of smart grids to 
communicate with the Trojans and trigger the payloads. 

• Needs to exploit software/ network vulnerabilities.

• Can be solved by software solutions.  

• Open problem. 
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Offline Synchronized Hardware Trojans

▪ Type A: No inter-Trojan communications.

 UTC provided by GPS module is a perfect way 
to synchronize each Trojan with one another. 
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▪ Type B: Allow inter-Trojan communications.

 Trojans can communicate with one another via 
network or powerline to synchronize with each 
other.

 Open problem, some interesting thoughts.  



Outline

▪ Type A: No inter-Trojan communications.

 Attack

 Mitigation 

▪ Type B: Allow inter-Trojan communications.

 Attack

 Possible Mitigation

▪ Risk Study
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• Implemented in a simple killer switch.

• In each critical node of a smart grid, the 

functional unit (e.g. PMU, RTU) which has a 

Trojan embedded can check whether the current 

time information provided by the GPS module is 

equal to a preset trigger time or not. 

• If all the Trojans have the same trigger time, 

then the entire power grid will shut down at the 

same time. 

• Assumptions of Type A Trojans: 

• No GPS module in Trojans

• Trojans do not access SW clock. 

GPS
T

Functional Units
Stop working when T = Ttri

Coordinated 
Universal Time T
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▪ Main idea: prevent Hardware Trojans from accessing to 
the correct time information. 

▪ We propose to enforce each power grid node to work 
in an unique time domain which has an unique time 
offset to the Universal Coordinated Time (UTC). 
 Time offsets are randomly generated, and fixed after initialization.

 Time offsets do not need to be secret, because they are generated 
after the fabrication of Trojans 

▪ A synchronized failure of all the nodes is converted to 
sporadic single node failures. 

▪ Adding an additional interface between the GPS 
modules and the other functional units.

▪ We reduce the Trusted Computing Base (TCB) from all 
the modules in one node to a trusted GPS module and a 
trusted additional interface. 
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▪ Open problem. 

▪ Possible mitigations:

 Formally verified finite state machine in the communication module

 Filter out all out-of-spec/ invalid messages.

 But it does not prevent attackers from using a rarely happened valid message as a trigger.   

 Split manufacturing. 

 Ask two manufacturers to fabricate the communication modules, assuming they do not collude with each other, and they cannot 
interpret one another’s trigger message.

 Neighboring nodes in the network topology originate from the different manufacturers. 
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One of the Trojans is activated first, but 

ideally its broadcasting message cannot 

be interpreted by the neighboring nodes, 

so the package is dropped. 
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 Attack
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Risk Study

▪ Both online and offline hardware Trojan attacks are valid and possible in theory. 

▪ In practice, a software attack is more likely to happen, because a large scale 
hardware attack is harder to prepare and launch.

▪ Hardware Trojans can be used to support software attacks, and the malicious 
behavior is controlled/ triggered by software. 

34



Conclusion

▪ We studied the feasibility and risk of synchronized hardware Trojan attacks in smart 
grids. We conclude that hardware Trojan attacks are more difficult to launch a 
damaging attack in smart grids than software attacks. 

35



Conclusion

▪ We studied the feasibility and risk of synchronized hardware Trojan attacks in smart 
grids. We conclude that hardware Trojan attacks are more difficult to launch a 
damaging attack in smart grids than software attacks. 

▪ For Type A offline attack:

 We propose to isolate the time domain of each node to prevent type A offline hardware Trojans 
from being activated at the same time. 

 It converts a failure of the entire power grid to sporadic single node failures.

 Our solution reduces the TCB to a GPS module with a small additional interface in each node. 

 Applicable to the current power grid infrastructure. 

35



Conclusion

▪ We studied the feasibility and risk of synchronized hardware Trojan attacks in smart 
grids. We conclude that hardware Trojan attacks are more difficult to launch a 
damaging attack in smart grids than software attacks. 

▪ For Type A offline attack:

 We propose to isolate the time domain of each node to prevent type A offline hardware Trojans 
from being activated at the same time. 

 It converts a failure of the entire power grid to sporadic single node failures.

 Our solution reduces the TCB to a GPS module with a small additional interface in each node. 

 Applicable to the current power grid infrastructure. 

▪ For Type B offline attack:

35



Conclusion

▪ We studied the feasibility and risk of synchronized hardware Trojan attacks in smart 
grids. We conclude that hardware Trojan attacks are more difficult to launch a 
damaging attack in smart grids than software attacks. 

▪ For Type A offline attack:

 We propose to isolate the time domain of each node to prevent type A offline hardware Trojans 
from being activated at the same time. 

 It converts a failure of the entire power grid to sporadic single node failures.

 Our solution reduces the TCB to a GPS module with a small additional interface in each node. 

 Applicable to the current power grid infrastructure. 

▪ For Type B offline attack:

 Open problem.

 Possible mitigations: Formally verified communication modules, Split Manufacturing.

35



Conclusion

▪ We studied the feasibility and risk of synchronized hardware Trojan attacks in smart 
grids. We conclude that hardware Trojan attacks are more difficult to launch a 
damaging attack in smart grids than software attacks. 

▪ For Type A offline attack:

 We propose to isolate the time domain of each node to prevent type A offline hardware Trojans 
from being activated at the same time. 

 It converts a failure of the entire power grid to sporadic single node failures.

 Our solution reduces the TCB to a GPS module with a small additional interface in each node. 

 Applicable to the current power grid infrastructure. 

▪ For Type B offline attack:

 Open problem.

 Possible mitigations: Formally verified communication modules, Split Manufacturing.

35

Thank you!


